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Abstract 

Distinct symbols are introduced for the members of 
the 44 pairs of enantiomorphic crystal classes in four 
dimensions. Minimal changes are made in the con- 
ventions regarding the symbols in order to make this 
possible. 

Introduction 

In three-dimensional space groups there are 219 
different combinations of symmetry elements, but 11 
of these are enantiomorphic and exist in two forms 
of opposite hand, thus generating the usually quoted 
total of 230 space groups. The Hermann-Mauguin 
notation provides symbols which distinguish 
explicitly the members of the enantiomorphic pairs. 
This problem does not exist in the three-dimensional 
point groups, but it does occur in the four- 
dimensional point groups. Although Brown, Billow, 
Neubiiser, Wondratschek & Zassenhaus (1978) indi- 
cated the 44 cases in which enantiomorphy occurs 
they did not number them separately, and the usually 
quoted figure of 227 for the number of four- 
dimensional point groups does not distinguish 
between the members of enantiomorphic pairs, of 
which there are 44. Thds if one counts these point 
groups in the same way as one usually counts three- 
dimensional space groups the total number is in fact 
271, and Wilson (1990) has pointed out the need for 
any notation system to distinguish between the enan- 
tiomorphs. This was not done in paper III of the 
present series (Whittaker, 1984b), although the effect 
of the enantiomorphy on the relevant hyper- 
stereograms has been discussed, and in two atypical 
cases a corresponding distinction arising in the nota- 
tion has been indicated (Whittaker, 1985). In these 
two atypical cases the enantiomorphy arises only from 
the relative arrangement of twofold rotation planes. 
In the other 42 cases it involves handed double rota- 
tions, and the purpose of the present paper is to 
extend the notation to deal with this. 

The double rotations 3.3 and 4.4 

The double rotation 4.4 has crypto-rotation planes 
whose orientations are incompletely determinate 

0108-7673/90/110940-03 

(Whittaker, 1985), but a particular range of them is 
compatible with their lying on the wx and yz planes. 
The operation can then be regarded as equivalent to 
one or other of the two matrices 

(00100 !)(i T000 !) 
o r  

0 0 0 0 0 

0 0 1  0 i 

These two distinct symmetry operations can obviously 
be represented as the double rotations 41.41 and 41.43 , 
respectively, and they are enantiomorphic with 
respect to one another. For reasons discussed else- 
where it is preferable in a symbolic notation to use 
the unitary symbol IV for the fourfold double rota- 
tion, and in order to distinguish between its two 
enantiomorphic forms we add a subscript sign. Thus 
IV+=41.41 and IV_=41.43. The graphical symbol 
adopted for use in the hyperstereograms of the crystal 
classes (Whittaker, 1984a) already contains an arrow 
which specifies the hand of the operation; an inward- 
pointing arrow corresponds to the above definition 
of IV÷ and an outward-pointing arrow corresponds 
to IV_. 

Exactly the same considerations apply to the 
double rotation 3.3, whose two enantiomorphic forms 
are 31.31 denoted as I l L  and 31.32 denoted as III_. 
Again the graphical symbol has an inward-pointing 
arrow for III+ and an outward-pointing one for III_. 

The double rotation 6.6 can always be factorized 
as 3.3.7 and only requires a separate symbol in class 
11/02 where III+.1 and III_.1 are indicated as 1i1+ 
and 1i1_. 

The double rotations 8.8 and 12.12 

The double rotations 81.81 and 121.121 (and their 
enantiomorphic forms 81.87 and 121.1211) are non- 
crystallographic operations. This may be inferred 
from the the fact that the traces of the corresponding 
matrices referred to rectangular axes lying in their 
crypto-rotation planes clearly have the non-integral 
values 4 cos 2~-/8 and 4 cos 27r/12 respectively. We 
therefore only have to consider the cases 81.83 and 
121.125 (and their enantiomorphs 81.85 and 121.127), 
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whose traces are respectively 

and 

2 cos 2¢r/8 +2 cos 617"/8 =0  

2 cos 2¢r/12+2 cos 10¢r/12 = 0. 

However, because their component crypto-rotation 
components are non-crystallographic in two 
dimensions they have to lie in uniquely defined crys- 
tallographically irrational planes (Whittaker & Whit- 
taker, 1986), which are not useful in developing a 
point-group notation. 

For 8.8 the unitary symbol VIII is therefore 
retained, and the hand adopted as VIII+ is that which 
makes 

VIII2+ = IV+. 

This in fact equates VIII+ with 81.85 and VIII_ with 
81.83 . The graphical symbol again has the inward- 
pointing arrow for VIII+ and the outward-pointing 
one for VIII_. 

The unitary symbol Xll '  for. 12.12 never has to be 
used in describing a crystal class because it can always 
be factorized into explicit components III and IV of 
opposite hand. The combination III+.IV_ corre- 
sponds to (the 7th power of) 121.127 and lll_.IV+ to 
(the 7th power of) 121.125. 

Notation for the enantiomorphic classes 

A distinctive notation for all the enantiomorphic 
classes is given in Table 1. 

If only one notational position is occupied by a 
Roman numeral then the appropriate sign is sub- 
scripted to this symbol. If more than one position is 
so occupied, then the first one corresponding to a 
double rotation of one hand only has the appropriate 
sign, and any subsequent double rotations that occur 
in one hand only are subscripted s (same) or o 
(opposite) to indicate whether they are of the same 
or opposite hand. Operations that are present with 
both hands are left unsubscripted. 

In most cases these rules only involve adding the 
appropriate sign to one symbol as compared with the 
previously published notation. In six cases, however, 
the effect is slightly more complex in that a subscript 
o is omitted from 30/02 and 30/03, the first subscript 
s is changed to a sign in 32/04 and 33/05, and the 
first subscript s is omitted and the second one changed 
to a sign in 33/08 and 33/09. 

It has already been noted that in the only two 
enantiomorphic classes that do not contain a handed 
double rotation (29/01 and 29/02) there is a change 
in orientation of twofold planes which moves their 
symbol from position 5 to position 4 and inverts it. 
A similar effect also occurs in certain classes that 

Table 1. Notation for all enantiomorphic classes 

Number of 
Ordinal Brown et al. 
number (1978) 1st enantiomorph 2nd enantiomorph 

36 10/01 IV+ IV_ 
37 11/01 III+ III_ 
38 11/02 I]I+ I]I_ 
76 16/01 IV+ 2/2 IV_ 2/2 
77 17/01 III+ - / 2  III_ - / 2  
78 17/02 III+ 2/2 II1_ 2/2 
112 21/01 I I I + / - / 2  I l l _ / - / 2  
113 21/02 III+/2/2 III_/2/2 
114 21/03 I I I + / - / 2  - / 2  I I I _ / - / 2  - / 2  
115 21/04 III+/2/2 2 III_/2/2 2 
154 26/01" VIII+ VIII_ 
155 26/02* VIII+ 2/2 VIII_ 2/2 
160 28/01 IV+IIio IV_IIio 
161 28/02 IV+IIIo 2/2 IV_IIio 2/2 
162 29/01 3/3 - - - 2 3/3 - - - / 2  
163 29/02 3/3 - - - 2 / 2  3/3 - - 2 / 2  
171 30/01 III+ IVs III_ IVs 
172 30/02* Ill+ IV/2/2 III_ IV/2/2 
173 30/03* III+/2/2 I V -  - 2  III_/2/2 I V - 2  
174 30/04 III+ IVs 2 / 2 -  2 I l L  IV, 2/2 2 
175 30/05 3/3 IV+ 3/3 IV_ 
176 30/06* III+/2/2 IVo/2 2 2 2 I I I _ / 2 / 2  IVo/2 2 2 2 
177 30/07 6/6 IV+ - - 2 6/6 IV_ - 2 
178 30/08* 3/3 IV+ 2 / 2 - 2  3/3 IV_ 2/2 2 
191 32/01 IV+ IVs IV_ IVs 
192 32/02 VIII+/2/2 IVo VIII_/2/2 IVo 
193 32/03 IV+ IVs-2 /2  IV_IVs-2/2 
194 32/04 IV/2/2 IV+ - . . . .  2 IV/2/2 IV_ - - - - 2 
195 32/05 IV+ IVs 3 IV_ IVs 3 
196 32/06 VLII+/2/2 IVs - 2 -  - - 2  VLII_/2/2 IVs - 2 -  - 2  
198 32/08 VIII+/4/4 IVo - - - - 2  VIII_/4/4 IVo - - - - 
201 32/11 IV+ IVs32 IV_ IVs32 
212 33/01 IV+ IV s III o IV_ IVs IIio 
213 33/02 V l l I+ - I I Io  V I I l _ - I I I o  
214 33/03 IV+ IV s Ill s IV_ IVs.IIIs 
215 33/04 IV+ IVs IIio 2/2 IV_ IVs IIio 2/2 
216 33/05 IV/2/2 IV+ I l l s -  - - - 2  IV/2/2 IV_ I l l s -  - - 2  
217 33/06 IV+ IV, III., 2/2 IV_ IV~ III,  2/2 
218 33/07 IV+ IVs 3/3 IV_ IVs 3/3 
219 33/08 IV/2/2 IV/2 I I I + -  - - 2 2 IV/2/2 IV/2 I I I _ -  - - 2 2  
220 33/09 IV/2/2 IV III+ 2 -  - - 2  IV/2/2 IV 1II_2-  - 2  
221 33/10 4/4 IV+ I I I s - -  - - 4 / 4  4/4 IV_ I l l s -  - - 4 / 4  
222 33/11 IV+ IVs 3/3 2/2 IV_ IVs 3/3 2/2 
223 33/12 4/4 IV+ III ,  2 -  - 4 / 4  2 4/4 IV_ III,  2 -  - 2  4/4 

- 2  

involve a handed double rotation, namely 30/03, 
30/04, 30/07, 30/08, 32/04, 32/06, 32/07, 33/05 and 
33/09. A similar change affects fourfold rotation 
planes as well in 33/10 and 33/12. 

If the enantiomorphic pairs of classes are to be 
listed separately it would be logical in each case to 
list the + one first, and it is given first in the following 
table. In all but seven cases the + form was the one 
illustrated with a hyperstereogram by Whittaker 
(1985), corresponding to the generating matrices 
given by Brown et al. (1978). These seven are indi- 
cated in Table 1 by an asterisk. It is not immediately 
obvious which of the enantiomorphs of 29/02 should 
be regarded as +, but it seems appropriate to regard 
it as the one that has its twofold planes in the same 
orientation as the enantiomorphic classes in system 
30 within the same family. 

One further point arises from a consideration 
of the enantiomorphy, which does not affect the 
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appearance  of  the notat ion but  affects the odenta-  
t ional conventions for the planes corresponding to 
the posit ions within the symbols  (Whittaker,  1985). 
In some cases a given posit ion in the two members  
of  an enan t iomorphic  pair  refers to a different subset 
of  the set of  p lane  orientations defined for the relevant 
crystal family.  These changes are not listed as they 
cab easily be derived by inspect ion of the hyper- 
stereogram and considerat ion of the effect of  a reflec- 
tion of  it in the xyz  plane.  
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Abstract 

An empirical investigation of the distribution of Friedel- 
pair two-phase structure invariants has been reported by 
Guo & Hauptman [Chin. Sci. Bull. (1989), 34, 137-141]. In 
the present paper their sign distributions are calculated for 
some small molecules and for a protein. The statistical 
figures show that there exists a strong tendency towards 
positive values for the signs of the two-phase structure 
invariants. It is anticipated that Hauptman's formula [Acta 
Cryst. (1982), A38, 632-641] may be good enough to esti- 
mate statistically the signs of the two-phase structure 
invariants for these model crystals. 

Introduction 

It has been known for a long time that the presence of 
anomalous scatterers facilitates the solution of the phase 
problem of macromolecular structures. Hauptman (1982) 
used his neighbourhood principle for integrating the tech- 
niques of direct methods with anomalous dispersion for 
TPSI (the two-phase structure invariant), ~2 = ~Pn + f - n ,  
and concluded that the conditional probability distribution 
of the TPSI has a unique maximum at ~2 = - ¢ .  If it is 
statistically reasonable, the new approach of direct methods 
may help to solve the geometric twofold phase ambiguity 
of a Friedel pair for a macromolecular crystal. The concise 
formula is 

~2 --- ~01-i + 9 - .  = -~:, (1) 

* Present address: Medical Foundation of Buffalo, Inc., 73 High 
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where ~o is the phase of the structure factor, and ~ is defined 
by 

where 

X cos ~: = CH, X sin ~: = -SH, (2) 
N 

c .  = X I f j . I  = cos 26 m ,  
j = l  

N 

s. = I .1 = sin 28in,  
j = l  

(3) 

N 

X Ifj.I =, (4) 
j = l  

f j .  = IfA exp (iSjH) (5) 

is the atomic scattering factor for atom j. As the probabilistic 
TPSI is of great importance to theory, Giacovazzo (1983) 
later obtained a similar result and suggested its practical 
application (Cascarano & Giacovazzo, 1984). 

Fortier, Fraser & Moore (1986) correctly pointed out that 
since 8 m is positive and generally small, both CH and SH 
are positive, and thus s ¢ is negative; it therefore follows that 
~2 as estimated by (1) has a positive value. In other words, 
formula (1) gives the wrong sign estimate only when the 
true sign of gt2 is negative. The author not only agrees with 
Fortier et al., but also decided to investigate how many 
wrong signs of TPSI as estimated by (1) may appear in 
practice and how the wrong signs are distributed with 
relation to the magnitudes I E I, and thus to go further into 
the question whether these wrong signs may lead to serious 
consequences in direct methods. 
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